If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+11t=0
a = -4.9; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·(-4.9)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*-4.9}=\frac{-22}{-9.8} =2+2.4/9.8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*-4.9}=\frac{0}{-9.8} =0 $
| 6(y-3)=3 | | 56=-7(9+n) | | -4.9t^2+11=0 | | 35+5m=50+m | | 54+6r=6(r+9) | | 5(x-18)=3× | | 8=7−|x| | | -6+5(1+5x)=99 | | 15-1/6n=1/6n | | x–5.4=3.6 | | 7x^2+2=x | | y+3×=1 | | -4.9t^2=11=0 | | 8(1-6x)-6=98 | | 2^7x=6 | | 6-3r=-6+r | | 67-x=281 | | 12-7x=x-4 | | 25+.45b=40+.25 | | 18-2n=14;2 | | 7p-4p=-24 | | 50+0.05m=35+0.01m | | 2x-2+6=-17-7 | | 3/7p=9 | | 48=-8(10s-6)+80s | | 7k–5=–19 | | 3x+8=6+5x | | w/7+13w=34-w | | -(-4x+4)=-x-14 | | 4w/20-7=17 | | -6=6+4w | | 18-3v=30 |